巴拿赫

张奠宙

(华东师范大学)

  巴拿赫,S(BanachStefan)1892330日生于波兰的克拉科夫;1945831日卒于苏联乌克兰加盟共和国的利沃夫.数学.

  巴拿赫的父亲是一名铁路职员,母亲将幼年的巴拿赫托付给一位洗衣女工.这位洗衣女工成了巴拿赫的养母,巴拿赫的姓是养母给起的.

  巴拿赫的童年过着清苦的生活.早在14岁那年他就不得不到私人家里讲课以养活自己.1910年中学毕业后曾自修数学,并到雅各龙大学听过一个短时期的课.后来就读于利沃夫工学院.第一次世界大战使他中断了学业,重回克拉科夫.这时他虽然丧失了接受正规数学训练的机会,但仍不断钻研数学.他靠自学和同数学家交谈获得许多数学知识.这些数学家包括O.尼可丁(Nikodym)W.威尔可兹(Wilkosz)等人.比巴拿赫年长5岁的H.斯泰因豪斯(Steinhaus)也在这时和他相识.斯泰因豪斯回忆说:“1916年的一个夏夜,我在克拉科夫旧城中心附近的花园里散步,无意中听到一段对话,确切地说只听到勒贝格积分等几个词,这吸引我跨过公园的长凳和两位谈话者相见,他们正是巴拿赫和尼可丁.”

  巴拿赫和斯泰因豪斯在这次夏夜的结识,对他们的一生影响甚大.那晚斯泰因豪斯曾提到一个有关傅里叶级数收敛性的问题,说他研究多时尚未解决.仅仅几天之后,巴拿赫就找到了答案,这使他们俩紧密合作,并在1917年联名写了一篇论文,两年之后发表在《克拉科夫科学院会报》(Bulletin of the CracovAcademy)上,这也是巴拿赫的第一篇论文.

  这篇论文引起人们的注意.1920年,利沃夫工学院的罗姆尼斯基(Lomnicki)教授将未经大学正规训练的巴拿赫,破格聘用为他的助教.同年,巴拿赫向利沃夫的简·卡齐米尔兹大学提交了他的博士论文,题为“关于抽象集合上的运算及其在积分方程上的应用” (Sur les opérations dans les ensembles abstraits etleur application aux équtions intégrales),由此取得博士学位.这篇论文发表在1923年的《数学基础》(Fundamenta Mathematicae)3卷中.人们有时把它作为泛函分析学科形成的标志之一.

  1922年,巴拿赫以一篇关于测度论的论文取得讲师资格,同年升为副教授.1927年在利沃夫工学院升为正教授.然而早在1924年,他已是波兰科学院的通讯院士了.

  巴拿赫在利沃夫大学的教学与科学活动,使他成为泛函分析方面的世界权威,一群才华出众的青年人聚集在他的周围,其中包括日后成名的S.马祖尔(Mazur)W.奥尔里奇(Orlicz)J.肖德尔(Schauder)以及S.乌拉姆(Ulam)等人.在巴拿赫和斯泰因豪斯的指导下,迅速形成了利沃夫数学学派.1929年,在利沃夫创办了关于泛函分析的专门杂志《数学研究》(Studia Mathe-matica),至今仍在世界上享有盛誉.

  巴拿赫的教学任务也很繁重.他花了许多精力写大学教材和中学教材,其中有一本关于力学的书很受欢迎.

  1932年,巴拿赫的名著《线性算子论》(Théorie des opéra-tions linéaires)作为《数学丛书》(Monografie Matematyczne)的第一卷刊行于世.这部著作总结了到那时为止的有关赋范线性空间的所有成果,成为泛函分析方面的一本经典著作.书中提到的线性泛函延拓定理、共鸣定理、闭图象定理,使全世界分析学家看到泛函分析的威力.该书中的全部术语已被广泛采用,而完备的赋范线性空间被后人称为巴拿赫空间.

  由于巴拿赫在泛函分析方面的杰出贡献,1936年在奥斯陆召开的国际数学家大会邀请他作大会报告.从1939年到1941年,他是利沃夫大学的校长.1939年被选为波兰数学会主席.他还是苏联乌克兰科学院的院士.

  在法西斯德国占领波兰时期,他的境况很糟.为了维持生计,曾到威格尔(Weigel)教授的研究所充当一名寄生虫饲养员.那里生产的抗伤寒病的疫苗,有一些曾被秘密送到波兰地下武装手中.1944年秋天,利沃夫城被苏联红军解放,巴拿赫回到大学工作.不幸的是,由于战时的贫困和受到法西斯摧残,他的健康状况恶化,加上胃癌的侵袭,终于在1945831日与世长辞.为了表示对这位杰出数学家的悼念,1960年在波兰召开的泛函分析国际会议上,举行了纪念巴拿赫的仪式.1967年出版了巴拿赫全集(Oeuvres)1972113日,华沙成立了巴拿赫国际数学中心(SBanach International Mathematical Center)

  泛函分析学科是20世纪数学的最重要分支之一,它是通常的、以微积分为主体的经典分析的自然推广.如果说函数是数集与数集之间的对应关系,那么泛函则是函数集与数集之间的对应关系,而算子则是函数集与函数集之间的对应关系.例如,如果用C[ab]表示[ab]上g的积分算子K(由核K(xy)所决定),泛函分析正是在这样的背景上发展起来的.

  相对于以n个坐标表示的点x=(x1x2,…,xn)构成的n维欧氏空间Rn来说,函数空间可以看成无限维空间,其中的元素x有无限多个坐标,例如,对于一个在[02π]上可积的函数(x),可以得到一列傅里叶系数(a0a1

  可以用相应的傅里叶级数来表示f(x).所以函数空间的研究使数学从有限维跨入无限维,泛函分析也可以说成是无限维空间上的分析学.

  函数空间的研究始于本世纪初,法国数学家M.弗莱歇(Fréchet)1906年提出线性距离空间的概念,德国大数学家D.希尔伯特(Hilbert)在研究积分方程时,引入了线性内积空间.巴拿赫研究的则是线性赋范空间,这是介于线性距离空间和线性内积空间之间的一类无限维空间.众所周知,在有限维空间情形向量ab之间可以有内积:(ab)=|a||b|cosθ,θ是向量ab之间的夹角,(ab)=0|a|,就可定义ab之间的距离ρ(ab)=|a-b|.巴拿赫研究的赋范空间,就是给每个元素赋以一个范数,它相当于通常的长度.例
但可以证明
Cab]中不可能定义内积,使之构成线性内积空间.

  完备的线性内积空间称为希尔伯特空间,它和巴拿赫空间构成泛函分析中最重要的两种空间.由于可数维的希尔伯特空间都和平方可和数

较单一,但是巴拿赫空间的结构十分复杂,因此近几十年来,研究巴拿赫空间结构的数学分支“巴拿赫空间几何”得到迅速发展.

  任何一门学科都有几个基本定理,泛函分析也不例外.其中最基本的两个定理都和巴拿赫有关.

  第一个定理是线性泛函延拓定理(即汉(Hahn)-巴拿赫定理).它保证在一个线性子空间上的线性泛函能够延拓到全空间上.这一问题起源于n维欧氏空间Rn上的矩量问题.巴拿赫在1920年提交的博士论文中,用几何语言将它推广到无限维空间.1922年,O.汉发表的论文也独立地得出类似结果.1927年,O.汉将结果更一般化.1929年,巴拿赫独立地给出同样的现在普遍使用的线性泛函延拓定理.该定理保证在无限维空间上有足够多的线性连续泛函可供研究,因而是线性泛函分析的一块基石.

  另一个基本定理是巴拿赫-斯泰因豪斯定理.这个定理又称为“一致有界性原理”,是1927年以两个人名义在《数学基础》第9卷上发表的.它断言,在巴拿赫空间X上,如果有一列算子(或泛函)Tn,能对每个xX,数列‖Tnx(n=12,…)都有上界Cx,那么必存在常数C有界.这显然是由各点x的局部有界性推广到在一个单位球上整体地一致有界性的深刻定理.这一定理的逆否形式称为共鸣定理.它是说,如果对一列算子或泛函Tn(n=12,…),存在元素列xn,‖xn‖≤1(n=12,…),使得‖Tnxn‖关于n无界,那么必至少存在一个公共的x,使‖Tnx‖关于n也无界,这就是共鸣的含意.

  由一致有界性原理立即可以推出在微分方程中十分有用的闭图象定理.此外,一致有界性原理在经典分析中有许多应用,例如,在三角级数中有一个著名的问题:任何连续函数的傅里叶级数是否必收敛于自身?答案是否定的.经典的证明很复杂,但用共鸣定理很快就得出答

(fn,x)|无界,然后由共鸣定理知存在公共的f0,使|Fn(f0,x)|无界.这就是说,确实存在一个连续函数f0(x),它的傅里叶级数在点x处不收敛.这种存在性的证明,很能显示出巴拿赫-斯泰因豪斯定理的威力.

  关于泛函的一致有界性原理早在1922年就被O.汉所证得,他用的是所谓“滑动驼峰法”.1927年,巴拿赫和斯泰因豪斯发现该原理成立的关键在于完备距离空间必定是R.贝尔(Baire)意义下的第二纲集,这是一个深刻的揭示.此外,他们把该原理推广到任意一族线性算子的情形.由于这个原因,现在教科书上也把一致有界性原理称作巴拿赫-斯泰因豪斯定理.

  巴拿赫另一个著名的成果是压缩映象原理.它断言,对于在完备距离空间上的映射f,如果空间中任两元素xy的距离d(xy)经映射后能得到压缩,即d(f(x)f(y))ad(xy)0a1,则f必有一个不动点z,即使得f(z)=z.这一原理有着广泛的应用,日后又为许多数学家所推广.它的最原始形式出现在1920年的巴拿赫的博士论文中.

  巴拿赫空间X上的线性连续泛函全体也构成巴拿赫空间,记为X*.设有X中的点列{xn}和x0,如果对任何fX*都有f(xn)f(x0),就说xn弱收敛于x0.巴拿赫对此作了详尽而深入地考察,这成为后来的线性拓扑空间理论及对偶原理的一个先导性工作.

  巴拿赫的研究范围不只限于泛函分析,他在正交级数、拓扑学、集合论等方面都有许多建树,其中有两项工作对后来影响很大.

  1924年,巴拿赫和A.塔斯基(Tarski)发表“关于将一些点集分割为彼此全等部分的分解”(Sur la decomposition des ensem-bles de point en parties respectivement congruents)一文,其中有一结果被称为分球怪论.它是说,在三维或更高维的欧氏空间中,任何两个有界的含有内点的集合(比如两个不同半径的球)总可以分别分割为同等数目的子集,使得它个保距的双射,这个结果等于说两个不同半径的球,在某种意义下可以全等.这和通常的直观感觉相违背,因而被称之为“怪论”.产生怪论的原因是用了选择公理(对集族Aα(α∈I),必存在集合S,使SAα=aα,α∈I).由于不用选择公理将使数学内容大为贫乏,所以现今的大多数数学家仍坚持使用选择公理.然而,如何消除这一“怪论”,眼下尚无妥善办法.正因为如此,分球怪论受到数学家的广泛重视.

  巴拿赫在泛函分析之外的第二个重大贡献是测度问题.所谓测度,乃是通常的长度、面积、体积概念的推广.巴拿赫提出问题:在n维欧氏空间中,能否给所有的有界子集M都指派一个非负实数A(M)作为测度,使得满足

  (i)有限可加性:M1M2为有界子集,彼此不相交,则

A(M1M2)= A(M1) A(M2)

  (ii)运动不变性:若M1M2在欧氏几何意义下全等,则A(M1)=A(M2)

  (iii)正则性:当M为普通的几何图形(如正方体)时,A(M)即为通常的n维体积.

  这就是所谓“较易测度问题”,巴拿赫证明,当n3时这一问题是无解的.这可用分球怪论直接推得.至于n=1n=2情形,则问题有解.巴拿赫还讨论过较难测度问题,那是将条件(i)改为可列可加性:

  (i)对一列两两不相交有界集合M1M2,…,Mn…,总有

 

  巴拿赫又证明能满足(i)(ii)(iii)A(M)是不存在的,不论n123,…都是如此.

  由于这些工作都涉及数学的基本问题之一:是否每个集合都可测?其答案又出乎人们的意料之外,因而一直受到世人的重视.

  巴拿赫不仅自己在科学上作出了巨大贡献,而且培育了一大批青年数学家,为形成强大的利沃夫泛函分析学派奠定了基础.他培养青年的方式中有一种很特别,这就是“咖啡馆聚会”.当年利沃夫学派的一个年青学者S.乌拉姆(后来去美国定居,在二次大战中参与原子弹的研制),曾写过一篇文章,题为“回忆苏格兰咖啡馆”,其中写道:“巴拿赫一天生活中有相当多的时间消磨在咖啡馆,当有同事和年轻同行围坐时,他可以滔滔不绝地讲上几个钟头.…咖啡桌跟大学研究所和数学会的会场一样,成了爆发数学思想火花的圣地.”“在苏格兰咖啡馆(利沃夫城内一间受数学家欢迎的咖啡馆)的频繁聚会中,数学家提出了各种问题.有时问题很多,大家觉得应该记录下来,于是在咖啡馆内专门准备了记录本,以便随时使用(咖啡馆的侍者也乐意给以方便,因为这免得他们擦洗涂在桌上的数学式子).于是,这些记录本就产生了一部传奇式的书:‘苏格兰书’.由于提问者当时或后来都很著名,使得这些记录具有重要的科学与历史价值,而且具有一种引起人们求知欲望的力量.由于巴拿赫夫人的功劳,这些‘苏格兰书’免遭战火,奇迹般地保存了下来”.此书后来由E.马尔采夫斯基(Marczewski)和斯泰因豪斯负责编辑出版.原稿由巴拿赫的儿子(一位博士)献给了巴拿赫国际数学中心.

  斯泰因豪斯在描绘巴拿赫个性时曾指出,巴拿赫所处的那个时代,波兰科学家还受到宗教那种殉道观念的束缚,即知识分子应当远离尘世的欢乐,象苦行僧那样清贫寡欲.但巴拿赫没有向这种观念屈服,不愿做圣徒的候选人.他是一位现实主义者,甚至到了接近玩世不恭的程度.他强调自己祖先的山民血统,并对那些无所专长的所谓有教养的知识分子持蔑视态度.

  巴拿赫恰好在第二次世界大战结束时去世,这使人们不胜惋惜.斯泰因豪斯在回忆巴拿赫时这样写道:“他最重要的功绩乃是从此打破了波兰人在精确科学方面的自卑心理,…他把天才的火花和惊人的毅力与热情熔为一体.”